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ABSTRACT

Relations between Goldie conditions of a semiprime algebra R and its
subalgebra R% of constants under an algebraic derivation are studied.
The results obtained are applied to actions of finite dimensional solvable
Lie algebras on associative algebras with no non-zero nilpotent elements.

Introduction

Let R be an associative algebra over a field F and L be a finite dimensional Lie
algebra over F. Let us recall that the action of L on R means a homomorphism
®: L — Derp R. The subalgebra of constants of L on R is the subset RL =
{r € R| d(r) = 0 for all d € &(L)}. For a single derivation d of R we will write
R? = {r € R| d(r) = 0}. In [7], [8], the relations between finiteness conditions
of R and RL have been studied in the case R is a prime algebra of non—zero
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characteristic and L is a restricted Lie algebra acting by outer derivations. This
means, in particular, that L acts by algebraic derivations d such that no power
of d is X-inner. In [2] Bergen considered similar problems for R being without
non-zero nilpotent elements, L solvable and restricted. In particular, he proved
that R is Goldie if and only if RE is Goldie and the Goldie localization of R can
be obtained by inverting the regular elements of RL.

In the paper we will consider the action of a single algebraic derivation d on a
semiprime algebra R of arbitrary characteristic. We will show that the investiga-
tions can be reduced to two cases, namely when d is either nilpotent or separable.
Using this aproach we prove, in particular, that R has a finite Goldie rank if and
only if R? has a finite Goldie rank and R is semisimple Artinian provided R¢ is
Artinian. This enable us to extend the result of Bergen [2, Theorem 3.4] to the
case of the action of finite dimensional solvable Lie algebra acting by algebraic
derivations.

By an ideal I of R we will mean a two-sided ideal. We will say I is a d-
ideal of R if d(I) C I. For subsets A, B of R l.annaB (r.annyB) will denote the
left (resp. right) annihilator of B in A, i.e. LanngB = {a € A| aB = 0} and
r.annaB = {a € A| Ba = 0}. For a right R-module M rank Mg will denote the
Goldie rank of M.

1. Nilpotent derivations

In this part d will stand for a nilpotent derivation of a ring R, n(R) will denote
the index of nilpotency of d on R.

For any k > 0 define Ry = {z € R| d¥(z) = 0}. Clearly Ry = 0, R; = R? and
Ri = R for all k£ > n(R). It is easy to see that the additive groups Ry define a
filtration of R, i.e., R; C R;41 and R;R; C Riy; forall 4,5 > 0.

For any 1 < k < n(R) let di denote the restriction of d to Rg. Then di: By —
Rj_1 is a homomorphism of R?-bimodules.

Let Q be a module property which is closed with respect to taking submodules
and extensions, i.e.

(1) fNCMand M €Q, then N €,

(2) f NCMand N, M/N €, then M € .

) can mean, for example, one of the following properties: to be Artinian,

Noetherian, to have finite Goldie rank, to have Krull dimension and so on.



Vol. 83, 1993 GOLDIE CONDITIONS 331

By inductive argument, using the filtration of R defined above together with
homomorphisms d: (Rk)ge — (Rk-1)r4, one can easily prove the following

PROPOSITION 1.1: If R%, € , then Rp« € . In particular;
(i) If RY is right Artinian (Noetherian), then R is right Artinian (Noetherian).
(ii) If rank R%, is finite, then rank Rp is finite and

rank Rg < rank Rpe < n(R) - rank R%,

The following example shows that the converse implication does not hold in

general.

Example 1: Let L = Fz + Fy be a two-dimensional non-abelian Lie algebra
over a field F of characteristic 0; [z,y] = . Define R = U(L)/(2?), where U(L)
is the universal enveloping algebra of L. Let X, Y € R denote the natural images
of z,y and d be the inner derivation of R adjoint to X. Since X% = 0, d is
nilpotent with n(R) = 3. Notice that R is Noetherian as a homomorphic image
of an enveloping algebra. Thus R is of finite Goldie rank. In fact one can verify
that rank Rg = 1.

We will show that rank R‘}iz, is infinite. Using relations XY - YX = X and
X? = 0 it is easy to see that every element from R is of the form f(Y)+ Xg(Y)
for some suitable f(Y),g(Y) € F[Y] and XY X = 0. Moreover by inductive
argument, XY™X = 0 for all m > 1. The above yields R = F + X F[Y] and
(XF[Y])? = 0. Therefore rank R%, is infinite, as required. |

In the sequel we will show that a similar example can not be constructed when
R is a semiprime ring. For doing so, some preparation is needed.

Henceforth we will assume that the ring R is semiprime. Fgr will denoted
the filter of all two—sided ideals of R with zero right annihilator. Since R is
semiprime, Fg consists of all ideals which are essential as right ideals. m(R) will
stand for the smallest natural number m such that for any non—zero d-ideal I
of R Lann;d™(R) # 0. We say that the ring R is homogeneous (cf. [5]) if for
any non-zero d-ideal I of R m(I) = m(R) and n(I) = n(R). A d-ideal I of R is
called homogeneous if I is homogeneous as a ring.

The following lemma will allow us to reduce our considerations to homogeneous

rings.
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LEMMA 1.2:
(1) If R is homogeneous, then every non—zero d-ideal I of R is homogeneous
and m(I) = m(R).
(2) There is a family {I,}aca of homogeneous d—ideals of R such that:
() Bacala € Fr,
(ii) each I, is either Z—torsion free or pl, = 0 for some prime number p,
ie. charI, =0 or char I, = p.

Proof: See [5, Lemma 2 and Proposition 3). 1

LEMMA 1.3: Let R be a homogeneous ring which does not contain an infinite
direct sum of ideals. Then for any non-zero right d-ideal K of R d™~1(K) # 0,

where m = m(R).

Proof: Let K be a non-zero right d-ideal of R. Assume d™~'(K) = 0. By
the definition of m = m(R), there is a non-zero d-ideal I; of R such that
lLann;, d™~(R) = 0. Define J; =r.anngl; and K; = Jy N K. Then I; N J; =0,
since R is semiprime, and K; # 0. To see that K; # 0, take 0 # z € K¢
Then 0 = d™"}(zR) = 2d™~!(R). Hence LN K # 0, where L =l.annpd™~(R).
Clearly hLL C I, N L = 0. It means that L C J; and proves that K; # 0.

We have constructed non-zero d-ideals Iy, J; of R such that Iy N J; = 0 and
a non-zero right d-ideal K of J; satisfying d™~!(X;) = 0. By Lemma 1.2(1),
Ji is a homogeneous ring with m(Jy) = m. Therefore we can apply the above
procedure to J; and K, instead of R and K. Continuing this process we can
construct a sequence of non-zero d-ideals R = Jy > J; b J2 b>--- and non—zero
d-ideals I of Jj_1, j > 0, such that I; N J; =0 for all j. Since R is semiprime,
every I; contains a non—zero ideal I; of R. The above implies that R contains
an infinite direct sum 6};’;’1 I; of ideals. This contradicts our assumption on R
and the thesis follows. |

The formulation of the following proposition is fairly complicaded, however the
result itself is very important. It provides a construction of a map which behaves

like a non-degenerate trace map.

PROPOSITION 1.4: Suppose R does not contain an infinite direct sum of ide-

als. Let I be a non-zero homogeneous d-ideal of R with either charI = 0 or
char] = p. Then there exist a d-ideal J of R such that J C I, J € F; and
a homomorphism t: J — I? of R?*-bimodules. The homomorphism t has the
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following property: for any right d-ideal K of R we have (K N J) # 0 provided
KnJ#0.

Proof: For defining t we will make use of an over-ring § of I. The definition of
S depends on the characteristic of I. Let m = m(I).

CASE 1: char] does not divide m. In this case we set S equal to the symmetric
Martindale ring of quotients of I. By [5, Theorem 5], there is € S such that
z™ = 0 and d(r) = zr — rz for all r € I. The construction of S provides us a
d-ideal J of I such that J € F and z¥Jz! C I for 0 < k,I < m. Replacing J by
IJI we may assume that J is a d-ideal of R.

CASE 2: charl = p > 0 and m = p*l, where k > 1 and the prime number p
does not divide I. Consider the ring of differential polynomials I'[X; d], where I
denotes the natural extension of I to a unital ring. Define § = I'[X;d]/(X™).
Applying the same arguments as in [5] we will prove that (X™)N I = 0. Indeed,
it is easy to see that every polynomial in (X™) has a free coefficient of the form
Y~ d™(a;)bi, where a;,b; € I'. Hence IN(X™) C d™(I)I' and

Lannzngxmy(d™(D)) - (N (X™)) = 0,

Now the definition of m(I) and the semiprimeness of I imply immediately that
IN(X™) = 0. Thus I can be treated as a subring of S. Let = be the canonical
image of X in §. Clearly 2™ =0 and d{r) = «r — rz for all » € I. It was shown
in [6, Lemma 3] that in the above situation rannsz?’ intersects every non-zero
d-ideal of I non-trivially. Therefore J = I- r.anmx”k € F; and z** J, J " CcJ
Obviously J is a d-ideal of I. As in the previous case, we may assume that J is
a d-ideal of R such that 2" Jz9?* C I for 0 <i,j < 1.

In both cases we define t: J — I? by the formula t(r) = ™ 'r 4+ 2™ 2rz +
oot zrz™=2 4 rg™ -1, Using the identity zr = rz +d(r), for r € J, we can write

t(r) in the following form
m—1

(1) tr) =) (-1)GR)em ),
i=0

forr e J.
In case char I = p and m = p* the above formula reduces to (see [6])

1

) t(r) = Y (=1)* () -Da¥ (),

i=1
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forr € J.

Since zt(r) —t(r)z = 0 for r € J, the choice of J and z together with formulas
(1), (2) yield that ¢ really acts into I¢.

Now we will show that ¢ is a homomorphism of R?-bimodules. The presented
proof covers the case charI = 0. If char] = p > 0, the proof is the same if we
replace z by 2" and formula (1) by (2). Suppose charI = 0. Notice that, since
S is an over-ting of I not of R, we do not know a priori that (zj)r = z(jr) for

j € J and r € R. However working inside S we have

(z(jr))a = z((ir)a) = 2(j(ra)) = ((z7)r)a

forany j € J, a € I, r € R. It means that ((zj)r —z(jr))] = 0 in the ring I, and
the semiprimeness of I give us (xj)r = z(jr) for any j € J and r € R. Using this
and the formula (1) it is clear that ¢ is a homomorphism of right R?-modules.
Similarly, expressing t(r) in terms of combinations of di(r) with coefficients 27 on
the right hand side, one can prove that ¢ is a homomorphism of left R%-modules,
as well.

Now let K be a right d-ideal of R such that K NI # 0. Because J is essential
in I, we may additionally assume that K C J. Notice also that the condition
imposed on R inherits on I. Thus we can apply Lemma 1.3 to I. Assume
t(K) = 0. Then, depending on char I, either

0= J:m—lt(A') — Im—ldm_l(I{)
or
0= xp"(l—])t(K') = .’L‘pk“_l)dm_l(h’),

respectively. By Lemma 1.3, d™ 1K) # 0,s0 Ky = ram;z" 'NK #0( K} =
rann;z? - 0 K # 0, respectively). Clearly t(K;) = 0. Repeating similar
procedure enough times, we can construct a non-zero right d-ideal K of I such
that ¢(K) = 0 and zK =0 (:c"kf = 0, respectively). Hence, by (1) and (2),
d™~1(K) = 0, which contradicts Lemma 1.3. Therefore t(K) # 0. |

LEMMA 1.5: Let R be a homogeneous ring with either char R = 0 or char R = p.
If rank Rp is finite, then rank R'Iigd is finite and

rank R'}{d < rank Rpg.
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Proof: Applying Proposition 1.4 to I = R we obtain an essential d-ideal J of
R and a homomorphism t: J — R? of R%-bimodules such that t(K) # 0 for any
non-zero right d-ideal of R contained in J.

Let K;, 1 <i < s, be non-zero right ideals of R? such that the sum 2";1 K;
is direct. Since R is semiprime and J € Fp, the d-invariant right ideal K;J is
non-zero for every 1 < i <s. Let K = K;JN Y., K;J. Then ¢(K) CH{K;J)N
U KiJ) € Kit(J)n Y Kit(J) S KNy, K;j=0,ie, t(K) = 0. This
implies K = 0, so the sum }_;_, K;J is direct and the thesis follows. |

Let us remark that in the above lemma we proved that rank R¢ is equal to

d-invariant Goldie rank of R, i.e., the Goldie rank with respect to right d—ideals.

LEMMA 1.6: Let R be a semiprime ring which does not contain an infinite direct
sum of ideals. Then for every essential right d-ideal K of R, K = K N R* is an
essential right ideal of R?.

Proof: By Lemma 1.2, there exist homogeneous d-ideals I,...,I; of R such
that F = ®:=1 I; € Fr and the charcteristic of I; is either zero or prime for
any 1 < i < s. Moreover, by Proposition 1.4, there are non—zero d-ideals J;
of R contained in I;, J; € F;, and non-trivial homomorphisms t;: J; — I,-d of
R%-bimodules, 7 = 1,...,s. Notice that J = @;;, J; € Fr, since E € Fr and
Jie Frfor1<i<s.

Let K be an essential right d-ideal of R and A a non-zero right ideal of R®.
We will show that K*NA # 0,i.e. K¢ is essential in R%. Because R is semiprime
and J € Fgr, AJ # 0. It means that for some 1 < j <s AJ; is a non-zero right
d-ideal of R. Thus AJ; N K is a non-zero right d-ideal contained in J;. Take
0 # a € (AJ; N K)®. By the semiprimeness of J; aJ; is a non-zero right d-ideal,

so Proposition 1.4 gives
0 # tj(aJ;) = at;(J;) C aI? C KI¢ C K“.

On the other hand aJ; € AJ} C AJ;. Since t; is a homomorphism of R?-
bimodules,

0 # tj(aJ;) C t;j(AJ;) = At;(J;) CAI} C A,
Consequently AN K¢ # 0, as required. 1

Now we are in position to prove the main result of this section.
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THEOREM 1.7: Let R be a semiprime ring with a nilpotent derivation d. Then
rank Rp is finite if and only if rank R}‘zd is finite and

rank R';td < rank Rg < n(R) - rank R‘,‘id.

Proof: Suppose rank Rg is finite. Let I),...,I, and F be ideals of R defined
in the proof of Lemma 1.6. We have rank(I}') e < rank(I;’) Bt = rank(I;-") 1¢, SO

b
applying the above lemma to K = F

s
d d (7d
rank Rps = rank Egs < ) rank(I{) 4.
i=1
Moreover, since E € Fgr and R is semiprime, similar considerations give us
rank Rp = Z‘;=1 rank(l;);;. Now Lemma 1.5 applied to homogeneous rings I,
1 < j < s implies that rank R';y is finite and rank sz,, < rank Rp. The converse

implication and the second inequality are given by Proposition 1.1. 1

2. Algebraic derivations

In this part we will show how to apply results of the previous section to algebraic
derivations of semiprime algebras. Henceforth R will be denote a semiprime
algebra over a field F' and d will stand for an algebraic derivation of R, i.e., d
is algebraic over F as an element of Endp(R*). Thus there are k,n > 0 and
elements ag, ..., ax € F such that

(3) apd” + ayd™ 4 4 apd™* =0,

Clearly we may assume ap = 1. Notice that n > 1, since otherwise R? = 0
and by [1, Theorem 1.3], R would be nilpotent. From the same reasons K¢ # 0
for every non-zero right d-ideal of R. Let us remark that if I is an ideal of R,
then d*(I"t*¥) C I for any s > 0. This and the semiprimeness of R yield that
any non-zero ideal I of R contains a non-zero d-ideal I. Thus, in particular,
INR? # 0. We will frequently use the above remarks.

Let Ry = {z € R| 3j > 0 d’(z) = 0}. It is standard to see that Ry is a
subalgebra of R and Rq = {z € R | d"(z) = 0}, where n is as in (3). Obvi-
ously R? C Ry and d is nilpotent on Ry. Moreover, it is known ([6]) that Rg is
semiprime. It means that we will able to apply results of the first section to the

extension R* C Ry.
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Let us consider an F-linear map f: R — Ry given by the formula f(z) =
z+ayd(z)+-- - + axd*(z). Remark that f is a homomorphism of R?-bimodules.
In the following lemma we collect basic properties of the map f; A denotes the
kernel of f.

LEMMA 2.1:
(1) f(R4) = Rq.
(2) (RiA+A)N Ry =0.
(3) R= R4® A as R?-bimodules.
(4) If I is a right ideal of R4, then (I + IR)N Ry = I.
(5) If K is a non-zero right ideal of R, then f(K) # 0.

Proof: Consider the natural filtration of Ry defined at the beginning of the first
section, i.e. (Rq)x = {z € Rq | d*(z) = 0}, for k> 0.

(1) Clearly 0 = (Ra)o C f(Ra). Assume that (Rq); C f(Ra) for some ¢ > 0.
Let £ € (R4)i+1. Then v = a;d(z) + - + ard*(z) € (Ry)i. By assumption,
there is y € Rq such that f(y) =v. Now z —y € Rq and f(z —y) = «. This
shows that (Ra)i+1 C f(Ra) and yields Rg = (Ra)n C f(R4).

(2) Let i > 0 and z € (Rq)i, a € A. Using the definition of f it is easy to see
that

f(za) € zf(a) + spanp{d'(z)d*(a)| I > 1, s 2 0} C
zf(a) + (Ra)i-14 C (Ra)i-1 4,

as a € A = ker f. Hence f*(R4A + A) C (Ri)eA = 0. (R4A+ A)N Ry
is a d-invariant subspace of Ry, thus for z € (RgA + A) N R? we have
z = f(z) = f*(z) = 0. Therefore (RgA+ A)NR; = 0.

(3) This statement is an easy consequence of (1) and (2).

(4) Let I be a right ideal of R4. Using (3) and (2) one obtains I C (I + IR)N
Ry C(I+IANR;CI+(IANRy)=1.

(5) Let K be a right ideal of R. Assume f(K) = 0. Since f and d commute,
f(X >0 d'(K)) = 0. Therefore, eventnally replacing K by Y5, d'(K),
we m;y assume d(K) C K and § = d|g is a derivation of K s—a.tisfying
14 a;6+ -+ apé* = 0. This implies K% = 0, so K = 0 and the thesis
follows. 1

Now we can extend Theorem 1.7 to algebraic derivations.
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THEOREM 2.2: Let R be a semiprime algebra and d be an algebraic derivation
of R. The following conditions are equivalent:

(1) rank Rp is finite,

(2) rank(R4)r, is finite,

(3) rank R g is finite.

Proof: In virtue of Theorem 1.7, conditions (2) and (3) are equivalent.

(1)=(2). Suppose rank Rp is finite. If rank (Ry)p, is infinite, then Ry contains
an infinite direct sum of right d-ideals I; & I & ... ([4, Theorem 3.1]). Then for
12>1

f(IERNY IIR) C fIIR) N F()_ I}R)
J#i J#i
CIRN) I'RiCLNY I =0.
J# J#i

Therefore, by Lemma 2.1(5), I!RN Y, ; I{R = 0 for any i > 1. This shows
that the sum ¥, I¢R is direct and yields the thesis.

(3)=(1). If rank R, is infinite then R contains an infinite direct sum K; @
K, @--- of right d-ideals ([4, Theorem 3.1}). Then }_,,, K¢ is an infinite direct
sum of right ideals of R?. Therefore rank Rp is finite pr—ovided rank R‘}’z,, is finite.
| |

For the algebra R, Z(R) will denote the right singular ideal of R. Recall that
R is said to be right non-singular if Z(R) = 0.

LEMMA 2.3: Let K be a right d—ideal of R.
(1) If R? = Ry, then K4 = K O\ Ry is essential in Ry provided K is d-essential
in R, i.e. for every non-zero right d-ideal K' of R K N K' # 0;
(2) If R is right non-singular then K, essential in R4 provided K is essential
in R.

Proof: (1) Suppose Ry = R%. Let a € R®. Then aR is a right d-ideal of R and
f(KNaR) C KgNaRy. Now Lemma 2.1(5) provides the thesis in this case.

(2) Let R be right non-singular. Assume Kq is not essential in Rq. Take
0 # a € Ry such that K4 NaRy = 0 and define K; = {z € K| d’(a)z € K} for
7 2 0. Since K is essential, each K; is essential and hence K= KonNKjN-- -NKptk
is an essential right ideal of R. Moreover, since d is algebraic of degree n + k
and K is d-invariant, standard calculations show that K is also d-invariant. Let
R4 = K 0 Ry. Notice that aKy C KsNaRy = 0 and di(a)Ky = 0 for j > 0
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follows, because K is d-invariant. Let m > 0 be such that 0 #b=d™(a) € R°.

Using the above, one gets
F(bR) = bf(R) C bKq =0

Applying Lemma 2.1(5) we obtain bK = 0. It means that 0 # b€ Z(R). This

contradicts our assumption on Z(R). Consequently Ky is essential in Ry. |

PROPOSITION 2.4: For the algebra R the following conditions are equivalent:
(1) R is right Artinian.
(2) Ry is right Artinian.

Proof: The implication (1)=-(2) is a direct consequence of Lemma 2.1(4).

(2)=(1). We know that Ry is semiprime. Suppose Ry is right Artinian. Then
R, is an unital algebra with a unity e. We will show that e is the unity of R.
Consider the right ideal K = {z—ez| z € R} of R. Noticing that e € R? and fisa
homomorphism of R%-bimodules one easily gets f(K) = 0. Therefore, by Lemma
2.1(5), K = 0. It means that e is the left unit of R. Now L = {z —z¢| z € R} is
a left ideal of a semiprime algebra R such that L2 = 0. Thus L = 0. This shows
that R is a unital algebra with the unity 1 =e.

Observe that R is right non-singular. Indeed, if Z(R) # 0 then Z(R), as a non—
zero two-sided ideal of R, contains a non-zero d-ideal. Therefore Z(R)N Ry is a
non-zero ideal of a semisimple artinian algebra. This yields that Z(R) contains
a non-trivial idempotent, which is impossible.

Now we will divide the proof into two cases depending on char F'. Let char F' =
0. By [4, Corollary 4.4] every essential right ideal K of R contains a d-invariant
essential right ideal K. By Lemma 2.3(2) K4 is essential in Ry,s01¢ KiCK
because Ry 1s semisimple Artinian. This means that R does not contain proper
essential right ideals. Moreover, by Theorem 2.2, Rpg is of finite Goldie rank, so
R is semisimple Artinian.

Let char F = p > 0 and m > 0 be such that p™ > n (recall that n is such
that Rg = {r € R | d"(z) = 0}. Then the algebraic derivation § = d?" satisfies
R4 = Rs = R®. By Lemma 2.3(1) R has no proper §-essential right ideals. Thus
Rp is completely reducible with respect to right é-ideals, i.e., for every proper
right 6-ideal K there exists a right é-ideal K’ such that K @ K' = R. This
together the fact that rank Rp is finite yields that Rp has a finite length with
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respect to right —ideals. By making use of [4, Theorem 3.1] we get that Rg has
a finite length, so is Artinian. |

As a direct consequence of the above proposition and Proposition 1.1 we get

THEOREM 2.5: Let d be an algebraic derivation of a semiprime algebra R. If
R? is right Artinian, then R is semisimple Artinian.

Now we are in position to prove the following result.

PROPOSITION 2.6: Suppose R? is semiprime. Then:
(1) R is right Artinian if and only if R? is right Artinian,
(2) R is right Goldie if and only if R® is right Goldie.
Moreover, in the case when both R and R? are right Goldie
(3) Q(R) = RT™!, where Q(R) is the Goldie localization of R and RT~! is a
localization of R at the set T of regular elements of R?.
(4) Q(R)? = Q(R?), where d is the unique extension of d to Q(R).

Proof: (2). Inlight of Theorem 2.2 the equivalence (2) holds if we will prove that
R is right nonsingular provided R? is semiprime Goldie. Suppose R? is semiprime
Goldie. Let char F = 0. Then the semiprimeness of R? implies R? = Ry. Indeed,
by Leibniz formula, d"~1(R4)? = 0 and d"~!(Ry) is a two-sided ideal of R?. Let
a € Z(R)N R%. Then K =r.annga is an essential right d-ideal of R. Thus, by
Lemma 2.3(1) K4 = K N Ry is essential in Ry = RY, i.e. a € Z(R?) = 0. This
shows that Z(R) N R? = 0 and implies Z(R) = 0, as required.

Let charF = p > 0 and let § = d?™ be such that Ry = Rs = R’. Since
R? is semiprime Goldie, Proposition 1.1 and Lemma 1.6 yield that R® has finite
Goldie rank and Z(R®) = 0, i.e. R’ is semiprime Goldie. Therefore, while
proving Z(R) = 0, we may replace d by § and assume that Rq = R%. Now, as in
the case char F = 0, Z(R) = 0 follows.

(3) and (4). Now assume that both R and R? are semiprime Goldie. We claim
that T is an Ore set of R. Since the right annihilator of a constant element is
d-invariant and every non-zero right d-ideal has a non-—zero intersection with
R4, all elements of T are regular in R. Now let s € T and a € R. Then K = sR
is an essential right d-ideal of R and K = ﬂ?:: {z € K| d’(a)z € K} is an
essential right d-ideal contained in K (see the proof of Lemma 2.3). By Leminas
2.3 and 1.6, R4 is essential in R?, so K C K contains a regular element ¢t € T
It means that sRN aT # 0, as claimed.
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Now we can consider the localization RT~! and the extension d of d to RT!
via d(at™!) = d(a)t~!. Clearly d satisfies the same identity (3) as d and (RT—1)¢
= RT~! is a semisimple right Artinian algebra. Applying Theorem 2.5 to RT™!
we obtain that RT ! is semisimple Artinian. Thus Q(R) = RT ! which gives
the proof of (3) and (4).

The statement (1) is a direct consequence of Theorem 2.5 and (4). |

We conclude this paper with the following extension of J. Bergen’s result [2,
Theorem 3.4] to the action of arbitrary solvable finite dimensional Lie algebra

acting by algebraic derivations.

THEOREM 2.7: Let R be an algebra with no non-zero nilpotent elements and let
L be a finite dimensional solvable Lie algebra acting on R by algebraic derivations.
Then:

(1) R is right Artinian if and only if RL is right Artinian,

(2) R is right Goldie if and only if RY is right Goldie.
Furthermore, in the case where both R and RY are right Goldie

(3) Q(R) = RT™?, where T is the set of regular elements of RE,

(4) QR)* = Q(R").

Proof: The algebra R is without non-zero nilpotents, so any its non-zero subal-
gebra is semiprime. We will proceed by induction on dim L. If dim L = 1, then
the theorem is a special case of Proposition 2.6. Assume dimL > 1. Then L
contains an ideal M of co-dimension one. Let z € L~NM. Then L =M @ Fz
as linear spaces and R = (RM)?, where d = ®(z). Applying the inductive hy-
pothesis to the extension RL = (RM)? C R™ C R we easily get statements (1)
and (2) of the theorem. From the same reasons, it is clear that:

(i) every element from T is regular in R,

(ii) T is an Ore set in RM such that Q(RM) = RMT"1,
(iii) T is an Ore set in R and Q(R) = RT_I, where T is the set of all regular
elements of RM.

Let s € T and 0 # a € R. Then, by (i) and (iii) sSRN aT # 0. Take 0 # af €
sRNaT. By (ii) and (iii) RMT ' = RMT-' Hence there are r € RM t € Tsuch
that 7' = rt~!. It means that &r = t € T. Therefore 0 # at = afr € sRN aT,
i.e.,, T is an Ore set in R.

Now extending the action of L to the action on RT~! by d(at™') = d(a)t™!,
for all d € ®(L), we see that L acts on RT~! by algebraic derivations and
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(RT-1)L = RLT-! = Q(RL). Making use of (1), we get immediately that RT~!
is semisimple Artinian, so Q(R) = RT~!. This ends the proof of (3) and (4).
]

Let us remark that the assumption imposed on R is essential in the above

theorem.

Example 2: (Bergen, [2]). Let R = M;y(S), where § = F{z,y} is a non-
commutative free algebra in two variables over a field F' of arbitrary character-
istic. Let d;, i = 1,2,3 be inner derivations of R adjoint to (3 %), (§ ), (§ }),
respectively. Then L = Fd; @ Fd; & Fd; is a three dimensional solvable Lie
algebra of algebraic derivations of R. One can check that R = {(§ 2)|a € F}.

Thus R is semisimple Artinian however R is neither Artinian nor Goldie. 1

Notice, at the end, that if a finite dimensional solvable Lie algebra L acts on
a semiprime algebra R by separable derivations (i.e., R¢ = Ry for any d € ®(L))
then the analogue of Theorem 2.7 holds, because R is semiprime for every d €
®(L) in this case (cf. [3]).
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